[1] GALDI GIOVANNI P, PADULA MARIAROSARIA. A New Approach to Energy Theory in the Stability of Fluid Motion[J]. Archive for Rational Mechanics & Analysis, 1990, 110(3): 187-286.
[2] MULONE G, RIONERO S. Necessary and Sufficient Conditions for Nonlinear Stability in the Magnetic Bénard Problem[J]. Archive for Rational Mechanics and Analysis, 2003, 166(3): 197-218.
[3] CHENG Jianfeng, DU Lili. On Two-Dimensional Magnetic Bénard Problem with Mixed Partial Viscosity[J]. Journal of Mathematical Fluid Mechanics, 2015, 17(4): 769-797.
[4] YAMAZAKI KAZUO. Global Regularity of Generalized Magnetic Bénard Problem[J]. Mathematical Methods in the Applied Sciences, 2017, 40(6): 2013-2033.
[5] YEZhuan. Global Regularity of the 2D Anisotropic Magnetic Bénard System with Vertical Dissipation[J]. Nonlinear Analysis: Real World Applications, 2018, 43: 407-427.
[6] FAN Jishan, SUN Jianzhu, TANG Tong. Uniform Global Strong Solutions of the 2D Density-Dependent Incompressible Magnetic Bénard Problem in a Bounded Domain[J]. Computers and Mathematics with Applications, 2019, 77(2): 494-500.
[7] KATO TOSIO, PONCE GUSTAVO. Commutator Estimates and the Euler and Navier-Stokes Equations[J]. Communications on Pure and Applied Mathematics, 1988, 41: 891-907.
[8] DUAN Jinqiao, MILLET ANNIE. Large Deviations for the Boussinesq Equations Under Random Influences[J]. Stochastic Processes and Their Applications, 2008, 119(6): 2052-2081.
[9] MANNA UTPAL, MENALDI JOSE-LUIS, SRITHARAN SIVAGURU S. Stochastic 2-D Navier-Stokes Equation with Artificial Compressibility[J]. Brain Research, 2008, 72(2): 360-365.
[10] ZHOU Yong, FANJishan, NAKAMURA GEN. Global Cauchy Problem for a 2D Magnetic Bénard Problem with Zero Thermal Conductivity[J]. Applied Mathematics Letters, 2013, 26(6): 627-630. |